ClosedPROWL: Efficient Mining of Closed Frequent Continuities in Temporal Databases
Author: Kuo-Zui Lin (林國瑞)
Publish Year: 2004-07
Update by: March 31, 2025
摘要
在資料探勘的領域中,型樣探勘一直是個相當重要的課題。早期,大部分的研究如頻繁項目集,主要在找尋同一筆交易中項目間的關聯性。近來,為能更有效地預測分析資料庫的行為趨勢,學者開始將焦點集中在交易間關聯性之探勘,用來描述不同交易間項目彼此的關係。連續事件即為一種交易間關聯性型樣,其明確描述著不同交易之間的相對位置與前後順序等關係。由於連續事件跨越了交易記錄間的藩籬,以致於潛在型樣與規則的數量急遽增加,如此不但會降低整體演算法的效率,還會使探勘結果難以運用,因此我們選擇探勘緊密頻繁連續事件。緊密頻繁連續事件是一群具有代表性的頻繁連續事件,不但數量相對較少,且可以由其展開列舉出所有的頻繁連續事件,因此具有消除冗餘資訊又不喪失其完整性的優點。本篇論文中,我們提出一個有效率的演算法ClosedPROWL,主要採用投影視窗列表技術以進行緊密頻繁連續事件的探勘。實驗結果顯示,不論在合成資料集或真實資料集,相較於之前其他方法,我們的演算法皆擁有更佳的效能與延展性。