HybirdGMiner:The Mining Strategy on Frequent Isomorphism Graph Structure
Author: Cheng-Tao Ho (何承道)
Publish Year: 2006-07
Update by: March 31, 2025
摘要
由於在頻繁項目集合(Frequent Itemsets)和序列型樣(Sequential Patterns)的探勘技術日趨成熟,很自然的,我們會想再進一步探討另一種包涵更廣泛資料關聯性的型樣探勘(Pattern Mining)- 圖形探勘(Graph Mining)。圖形探勘的應用非常廣泛,較著名的應用領域像是化學(Chemistry)、生物學(Biology)和電腦網路方面(Computer Network),以及其它所有可以對應成圖形型樣(Graph Pattern)的實際資料,在這些領域都會需要圖形型樣的探勘技術來支援其資料的分析與預測。圖形探勘的主要挑戰在於如何解決子/圖形同構(Subgraph/ Graph Isomorphism)問題,在本篇論文中我們提出一個結合圖形標準型態(Canonical Form)和資料內嵌結構的演算法,針對圖形資料庫(Graph Databases)進行高效率探勘。其主要概念為利用圖形標準型態解決重覆列舉問題,以及有技巧的記錄圖形型樣在資料庫中的位置(Embedding List),完全避免子圖形同構的檢查問題。實驗顯示我們所提出的演算法無論在合成資料與實際資料中,探勘效率都會勝過gSpan。