Context-Aware Question-Answer Pairing and Dialogue Act Tagging from Instant Message Chatlog

Author: 陶玫婉

Publish Year: 2021-07

Update by: March 26, 2025

摘要

在本論文中,我們研究了數據準備過程的兩個不同任務:問答配對準備 (Question-Answer Pair Preparation) 和 對話行為標註 (Dialogue Act Tagging)。與其他作品不同,我們的數據來自即時通訊(Instant Messaging: IM)平台,參與者更常將長句拆分成短句,分散成多條消息中發送。因此,在準備問答對時,我們還考慮了一個稱為消息合併任務的任務,用以確定這些消息是否需要進行合併以進行回复預測任務。我們提出了一個 CONTEXT-AOA 模型,將上下文(先前的對話)作為除成對消息之外的附加輸入。其次,在對話行為標註任務,當我們無法獲得更多標註數據時,我們探索了使用域外數據集來處理該任務的可能性。我們對這個任務進行了兩個實驗。第一個實驗是零樣本學習實驗,我們只使用域外數據集訓練模型並在我們的數據集上測試它們,另一個實驗是我們將一些數據集與外部數據一起包含在模型中域數據集並在剩餘數據上測試它們。我們還提出了一個 CONTEXT-BERT-CRF 模型,它利用了 BERT 微調的能力,同時仍然能夠保留對話中的所有話語並將它們全部提供給模型。我們在問答對準備任務和對話行為標記任務上的實驗顯示,我們提出的模型在大多數實驗中都能夠勝過所有現有模型。為了演示這兩個任務的使用,我們也構建了基於檢索的聊天機器人。 此聊天機器人不僅根據用戶的輸入從前述準備的問答對中選擇回應,同時也應用對話行為標註資訊來幫助選擇答案。