排序學習及自編碼器混成技術在投資組合策略之應用
Author: 張民學
Publish Year: 2021-07
Update by: March 26, 2025
摘要
隨著科技進步,金融科技(Fintech) 成為眾多研究的主要議題,因此藉由科技協助人們做投資組合也是重點研究之一。在金融市場上,高收益的產品都伴隨著高風險,因此如何有效選取不同投資標的,卻能獲得一定收益水準是主要研究主題。在本研究我們使用台灣股市作實例研究,為了從複雜多變的金融市場數據中,萃取出更深層的特徵,我們建議使用基於遞迴神經網路(Recurrent Neural Networks,RNN) 中的長短期記憶(Long Short-Term Memory,LSTM) 作為自編碼器的基本架構,並加入預測解碼器,擷取新特徵供排序學習中的RankSVM 使用,從30 檔股票裡,挑出前10 名下週預測漲跌幅最高的股票,作為每週的投資組合,之後我們回測了在2019 年和2020年之收益成效,從收益結果來說,當整體環境趨勢明顯的情形下,加入預測解碼器的組合式模型,更能提升收益回報率,但在大盤處於盤整時,僅將數據經由LSTM 自編碼器較能保持收益率。由於2020 年全球經歷COVID-19 疫情後,全球股市重創,因此從數值結果發現,在輸入更多類似的事件至RankSVM 後,對於重大事件的應變能力會有所提升,最後我們比較了均值-變異數模型動態尋找每週最佳夏普值之投資組合和台灣50 這兩年的收益成效,結果發現我們的每週的投資組合普遍都比均值-變異數模型和台灣50 更能創造收益。